Analysis of Content Validity on Mathematical Computational Thinking Skill Test for Junior High School Student Using Aiken Method

Yusriyyah Febriani Putri, Kadir Kadir, Ahmad Dimyati

Abstract


Computational thinking skills are a relevant approach to future problem-solving. Therefore, these skills need to be integrated into mathematics learning in schools. This research is part of developing mathematical computational thinking skill tests for junior high school students. In this segment, the study aims to analyze the content validity of the mathematical computational thinking skill test. The main stages in this research are define, design, and develop. Expert validation data were collected using Google Form sheets. The analysis technique used is the content validity technique with the V Aiken method.  The results of the study revealed that the results of content validation through the assessment of 7 experts, developed a test specification containing 20 items that measure mathematical computational thinking skills with a coefficient (V) in the interval (0.770 – 0.920) with an average of 0.866 or very good category. The test instrument is valid for measuring decomposition indicators, pattern recognition, abstraction, algorithmic thinking, and evaluation indicators. Each indicator is measured by 4 items with a coefficient of V decomposition indicator of 0.868, pattern recognition 0.883, abstraction 0.865, algorithmic thinking 0.833, and evaluation 0.883. The study concludes that the indicators of decomposition, pattern recognition, abstraction, algorithmic thinking, and evaluation indicators are valid in measuring mathematical computational thinking skills.


Keywords


mathematical computational thinking skill; content validity; Aiken method; research and development

Full Text:

PDF

References


Amelia, A. (2020). Pengaruh Model Cooperative Problem Based Learning Terhadap Kemampuan Komputasional Matematis. Universitas Islam Negeri Syarif Hidayatullah Jakarta.

Arikunto, S. (2021). Dasar-dasar Evaluasi Pendidikan (3rd ed.). Bumi Aksara.

Barr, V., and Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved, and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., and Woollard, J. (2015). Computational thinking A guide for teachers. Computing At School, 18.

Curzon, P., Dorling, M., Ng, T., Selby, C., and Woollard, J. (2014). Developing computational thinking in the classroom: a framework. Computing at School, (June), 1–6.

Denning, P. J. (2009). The profession of IT: Beyond computational thinking. Communications of the ACM, 52(6), 28–30. https://doi.org/10.1145/1516046.1516054

Denning, P. J., and Tedre, M. (2019). Computational Thinking. Cambridge, MA: The MIT Press.

Grover, S. (2017). Assessing Algorithmic and Computational Thinking in K-12: Lessons from a Middle School Classroom. In Educational Communications and Technology: Issues and Innovations. Springer, Cham. https://doi.org/10.1007/978-3-319-52691-1

Kadir, K., Fatma, M., and Rizki Heryani Oktavianti, R. (2018). Development of KADIR Learning Model to Enhance Students' Mathematical Problem Solving Skill. 115(Icems 2017), 110–116. https://doi.org/10.2991/icems-17.2018.22

Kadir, and Sappaile, B. I. (2019). Development of a metacognition scale in learning mathematics for senior high school students. Pertanika Journal of Social Sciences and Humanities, 27(1), 181–194.

Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E., and Tolboom, J. (2021). Characterizing computational thinking in mathematics education: a literature-informed Delphi study. Research in Mathematics Education, 23(2), 159–187. https://doi.org/10.1080/14794802.2020.1852104

Kamil, M. R., Imami, A. I., and Abadi, A. P. (2021). Analisis Kemampuan Berpikir Komputasional Matematis Siswa Kelas IX SMP Negeri 1 Cikampek pada Materi Pola Bilangan. AKSIOMA: Jurnal Matematika Dan Pendidikan Matematika, 12(2), 259–270. https://doi.org/https://doi.org/10.26877/aks.v12i2.8447

Korkmaz, Ö., Çakir, R., and Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., … Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37. https://doi.org/10.1145/1929887.1929902

Lewis. R. Aiken. (1985). Three Coefficients For Analyzing The Reliability And Validity Of Ratings. Educational and Psychological Measurement, 45, 131–141. Retrieved from https://journals.sagepub.com/doi/abs/10.1177/0013164485451012

Liu, J., and Wang, L. (2010). Notice of Retraction: Computational thinking in discrete mathematics. 2nd International Workshop on Education Technology and Computer Science, ETCS 2010, 1(61572419), 413–416. https://doi.org/10.1109/ETCS.2010.200

Sáez-López, J. M., Román-González, M., and Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two-year case study using “scratch” in five schools. Computers and Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

Satrio, W. A. (2020). Pengaruh Model Pembelajaran KADIR (Koneksi, Aplikasi, Diskursus, Improvisasi, dan Refleksi) Terhadap Kemampuan Berpikir Komputasional Matematis Siswa. Universitas Islam Negeri Syarif Hidayatullah Jakarta.

Supiarmo, M. G., Mardhiyatirrahmah, L., and Turmudi, T. (2021). Pemberian Scaffolding untuk Memperbaiki Proses Berpikir Komputasional Siswa dalam Memecahkan Masalah Matematika. Jurnal Cendekia : Jurnal Pendidikan Matematika, 5(1), 368–382. https://doi.org/10.31004/cendekia.v5i1.516

Suryani, A. (2010). ICT IN EDUCATION: ITS BENEFITS, DIFFICULTIES, AND ORGANIZATIONAL DEVELOPMENT ISSUES. Jsh Jurnal Sosial Humaniorah, 3(1), 13–33. https://doi.org/10.12962/j24433527.v3i1.651

Wei, S., Chee, C., Looi, K., and Sumintono, B. (2020). Assessing computational thinking abilities among Singapore secondary students : a Rasch model measurement analysis. Journal of Computers in Education, (0123456789). https://doi.org/10.1007/s40692-020-00177-2

Widjaja, W. (2013). The use of contextual problems to support mathematical learning. Journal on Mathematics Education, 4(2), 151–159. https://doi.org/10.22342/jme.4.2.413.151-159

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, (March 2006). https://doi.org/10.1145/1118178.1118215

Zein, M., and Darto. (2012). Evaluasi Pembelajaran Matematika. Pekanbaru: Daulat Riau.




DOI: https://doi.org/10.18326/hipotenusa.v4i2.7465

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yusriyyah Febriani Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

View My Stats