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Abstract 
In this paper, we compare two relevant methods to find Analytical solution of the Black-
Scholes Equation. First, we apply the Adomian Decomposition Method as in [2], to 
obtain a solution to the aforementioned equation with boundary condition for a 
European option. Secondly, we apply the Lie algebraic Approach for determining the 
solution as in [7]. Those two methods conducted us to investigate the thin line between 
the underlying results. Finally, we suggest a simple enhanced Due Diligence on both 
approaches.    

Keywords: Black-Scholes equation, Adomian Decomposition Method, Lie Algebraic 
Approach, Symmetry analysis 

INTRODUCTION  

The Black-Scholes equation, which was first published it in 1973 by Fischer Black 

and Myron Scholes[5], has been created to present a general equilibrium of financial 

option pricing by the means of stochastic differential Equation. 

This paper presents the Adomian Decomposition Method (ADM) applied to a 

diffusion equation [2], with non-null Dirichlet boundary conditions, obtained after 

reducing the Black-Scholes Equation with homogenous boundary equations.   The 

method is based on both the decomposition of the unknown function in an infinite series 

∑ 𝐴𝐴𝑛𝑛∞
𝑛𝑛=0  and the decomposition of the nonlinear term of the equation in another series 

∑ 𝐴𝐴𝑛𝑛∞
𝑛𝑛=0 ,     when the  𝐴𝐴𝑛𝑛 are named Adomian polynomials. The method has been applied 

in many deterministic and stochastic problems. The linear and nonlinear problem has been 

used from physics to Finance and vice versa. 

In general, the most effective strategy regarding option pricing can be found by 

solving Black-Scholes equation using the Lie Symmetry theory [1]. This theory which 
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has been widely adopted in physics and engineering were applied for the first time in 

finance by Gazizov and Ibragimov[3]. They implemented a relevant technic to transform 

the Black-Scholes equation into a classical heat equation.   

To the best of our knowledge, there is a lack of research on the comparison 

between the Adomian Decomposition Method and the Lie Algebraic Approach.  In this 

paper, we explore Both Approaches to the pricing of European Call options problems in 

risky, flexible and irreversible financial ecosystems. 

MATERIALS AND METHODS 

Black- Scholes equation   

In financial mathematics, it can be demonstrated that by studying a strategy of self-

financing, one can reach the following partial differential equation called Black-Scholes 

equation:  

𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑥𝑥) = 𝑟𝑟𝑡𝑡(𝑡𝑡, 𝑥𝑥) + 1
2
𝜎𝜎2𝑥𝑥2𝑟𝑟𝑥𝑥𝑥𝑥(𝑡𝑡, 𝑥𝑥) + 𝑟𝑟𝑥𝑥𝑟𝑟𝑥𝑥(𝑡𝑡, 𝑥𝑥) 𝑥𝑥 > 0  , 𝑡𝑡 ∈ [0,𝑇𝑇]       (1)   

Where 𝑟𝑟 represent the value of the action 𝑡𝑡 the time, 𝑟𝑟 the option price, 𝑟𝑟 is the type of 

interest of the market of debt, 𝜎𝜎 the volatilily of the action measured as the standard 

deviation of the logarithm of the value of the action. In this paper, we give an analytic 

solution of call option problem,   

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑥𝑥) = 𝐶𝐶𝑡𝑡(𝑡𝑡, 𝑥𝑥) +

1
2
𝜎𝜎2𝑥𝑥2𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡, 𝑥𝑥) + 𝑟𝑟𝑥𝑥𝐶𝐶𝑥𝑥(𝑡𝑡, 𝑥𝑥)  𝑥𝑥 > 0,   𝑡𝑡 ∈ [0,𝑇𝑇]

 𝐶𝐶(𝑇𝑇, 𝑥𝑥) = max(𝑥𝑥 − 𝐾𝐾, 0)                                                                                  
𝐶𝐶(𝑡𝑡, 𝑥𝑥) = 𝑥𝑥 − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)    𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝑥𝑥 → ∞                                                       
𝐶𝐶(𝑡𝑡, 0) = 0      ∀ 𝑡𝑡 > 0                                                                                        

        (2) 

  To reduce (2) into a diffusion problem, we use change of variable given by  

𝜏𝜏 =
1
2
𝜎𝜎2(𝑇𝑇 − 𝑡𝑡),   𝑦𝑦 = ln �

𝑋𝑋
𝐾𝐾�

, 𝛾𝛾 =
2𝑟𝑟
𝜎𝜎2

 

And we assume that (𝑡𝑡, 𝑥𝑥) can be expressed by:  

𝐶𝐶(𝑡𝑡, 𝑥𝑥) = 𝐾𝐾𝑒𝑒−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑈𝑈(𝜏𝜏,𝑦𝑦) 

where  

𝑎𝑎 =
1
2 �

2𝑟𝑟
𝜎𝜎2

− 1�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 = (1 + 𝑎𝑎)2 
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Thus, (2) transforms into  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑢𝑢𝑡𝑡(𝜏𝜏,𝑦𝑦) = 𝑢𝑢𝑥𝑥𝑥𝑥(𝜏𝜏,𝑦𝑦),   𝑦𝑦 > 0, 𝜏𝜏 ∈ �0,

𝜎𝜎2𝑇𝑇
2 �

𝑢𝑢(0,𝑦𝑦) = max �𝑒𝑒
1
2(𝛾𝛾+1)𝑎𝑎 − 𝑒𝑒

1
2(𝛾𝛾−1)𝑎𝑎 , 0�             

𝑢𝑢(𝜏𝜏, 𝐿𝐿) = 𝑒𝑒
1
2(𝛾𝛾+1)𝐿𝐿+14(𝛾𝛾+1)2𝑏𝑏 − 𝑒𝑒

1
2(𝛾𝛾−1)𝐿𝐿+14(𝛾𝛾−1)2𝑏𝑏

𝑢𝑢(𝜏𝜏, 0) = 0                                                                  

         (3) 

The general solution of (3) is given by:  

𝐶𝐶(𝑡𝑡, 𝑥𝑥) = 𝐾𝐾𝑒𝑒−
1
2(𝛾𝛾+1)𝑥𝑥−14(𝛾𝛾−1)2𝑏𝑏𝑈𝑈(𝜏𝜏, 𝑦𝑦)  (4) 

This to obtain a solution of call option problem (4), we reduce equation (2) into (3). This 

is, we have reduced the Black-Scholes equations into a diffusion equation in vide to use 

all given Boundary conditions.    

Adomian Decomposition Method versus Lie Algebraic Approach   

Adomian Decomposition Method(ADM)  

Given a differential equation   

𝐹𝐹 𝑢𝑢(𝑡𝑡) = 𝑔𝑔(𝑡𝑡)     (5) 

Where 𝐹𝐹 represents a non lineare differentiel operator which includes both lineare and 

non lineare terms, so that equation (5) can be written as  

𝐿𝐿𝑢𝑢(𝑡𝑡) + 𝑅𝑅𝑢𝑢(𝐴𝐴) + 𝑁𝑁𝑢𝑢(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) 

Where   

𝐿𝐿 + 𝑅𝑅 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑟𝑟 𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑜𝑜𝑟𝑟, 

𝐿𝐿 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙𝑦𝑦 𝑖𝑖𝑎𝑎𝑖𝑖𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑏𝑏𝑙𝑙𝑒𝑒 𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑜𝑜𝑟𝑟, 

𝑅𝑅 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑒𝑒𝑟𝑟𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒 𝑙𝑙𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑟𝑟 𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑜𝑜𝑟𝑟, 

𝑁𝑁 𝑟𝑟𝑒𝑒𝑜𝑜𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖  𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑜𝑜𝑎𝑎 𝑙𝑙𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑟𝑟 𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑜𝑜𝑟𝑟, 

𝑔𝑔 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑜𝑜𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 𝑟𝑟𝑜𝑜𝑎𝑎𝑟𝑟𝑡𝑡𝑖𝑖𝑜𝑜𝑎𝑎 𝑜𝑜𝑟𝑟 𝑢𝑢(𝑡𝑡). 

Resolving for 𝐿𝐿𝑢𝑢(𝑡𝑡),    

𝐿𝐿𝑢𝑢(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) − 𝑅𝑅𝑢𝑢(𝑡𝑡) − 𝑁𝑁𝑢𝑢(𝑡𝑡) 

Since 𝐿𝐿 is invertible, we have that:  

𝐿𝐿−1𝐿𝐿𝑢𝑢(𝑡𝑡) = 𝐿𝐿−1𝑔𝑔(𝑡𝑡) − 𝐿𝐿−1𝑅𝑅𝑢𝑢(𝑡𝑡) − 𝐿𝐿−1𝑁𝑁𝑢𝑢(𝑡𝑡) 

𝐴𝐴𝑛𝑛 Equivalent expression   

𝑢𝑢(𝑡𝑡) = 𝜑𝜑 + 𝐿𝐿−1𝑔𝑔(𝑡𝑡) − 𝐿𝐿−1𝑅𝑅𝑢𝑢(𝑡𝑡) − 𝐿𝐿−1𝑁𝑁𝑢𝑢(𝑡𝑡)     (6) 
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Where 𝜑𝜑 is the integrale constant and satisfies 𝜑𝜑 = 0. For problems with an initial value 

in 𝑡𝑡 = 𝑎𝑎, we have convenitly defined 𝐿𝐿−1 for  𝐿𝐿 = 𝑑𝑑𝑛𝑛𝑎𝑎
𝑑𝑑𝑥𝑥𝑛𝑛

 ,   

Which is the definite integral of a to 𝑡𝑡. This method assumes a solution in the form of an 

infinite series for the unknown function 𝑢𝑢(𝑡𝑡) given by,    

𝑢𝑢(𝑡𝑡) = � 𝑢𝑢𝑖𝑖(𝑡𝑡)      (7)
∞

𝑖𝑖=0
 

The nonlinear term 𝑁𝑁𝑢𝑢(𝑡𝑡) is decomposed as:  

𝑁𝑁𝑢𝑢(𝑡𝑡) = �𝐴𝐴𝑛𝑛 (𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)    (8)
∞

𝑛𝑛=0

 

Where 𝐴𝐴𝑛𝑛 is called Adomian polynomial, and depends an the particularity of the nonlinear 

operator. The  𝐴𝐴𝑛𝑛  are calculated in general way by the following formula:  

𝐴𝐴𝑛𝑛(𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) =
1
𝑎𝑎!

𝑎𝑎𝑛𝑛

𝑎𝑎𝑑𝑑𝑛𝑛
𝑁𝑁��𝑑𝑑𝑗𝑗𝑢𝑢𝑗𝑗

∞

𝑗𝑗=0

�⧸𝜆𝜆=0    (9) 

Can be solved using software such as Maple[4] substituting (7) and (8) in (6) we have,   

�𝑢𝑢𝑖𝑖(𝑡𝑡) = 𝜑𝜑 + 𝐿𝐿−1𝑔𝑔(𝑡𝑡) − 𝐿𝐿−1𝑅𝑅�𝑢𝑢𝑖𝑖(𝑡𝑡) − 𝐿𝐿−1�𝐴𝐴𝑛𝑛(𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)
∞

𝑛𝑛=0

∞

𝑖𝑖=0

∞

𝑖𝑖=0

 

And thus a solution is obtained by  

� 𝑢𝑢0(𝑡𝑡) =  𝜑𝜑 + 𝐿𝐿−1𝑔𝑔                                             
𝑢𝑢𝑛𝑛+1(𝑡𝑡) = −𝐿𝐿−1𝑅𝑅𝑢𝑢𝑛𝑛(𝑡𝑡) − 𝐿𝐿−1𝐴𝐴𝑛𝑛(𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) 

The approximations are given by  

𝜓𝜓𝑘𝑘 = �𝑢𝑢𝑖𝑖(𝑡𝑡)
𝑘𝑘−1

𝑖𝑖=0

 

The decomposition of the solution series converges in general very quickly. This nears 

that few terms are required for the approximation convergence of this method has been 

rigorously established in[9]. 

Lie Algebraic Method  

Symmetry analysis is of the most powerful analytical techniques for systematically 

solving PDEs through transformation. According to Lie[4], differential equations can be 

integrated or reduced to lower order terms based or synthesis symmetry. Baumann[1] 

found that two independent variables 𝑥𝑥, 𝑦𝑦,and are dependent variable 𝑖𝑖 can be solved 

using the below equation:   
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Δ�𝑡𝑡, 𝑥𝑥, 𝑖𝑖,
𝜕𝜕𝑖𝑖
𝜕𝜕𝑡𝑡

,
𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥

,
𝜕𝜕2𝑖𝑖
𝜕𝜕𝑡𝑡2

,
𝜕𝜕2𝑖𝑖
𝜕𝜕𝑥𝑥2

,
𝜕𝜕2𝑖𝑖
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡

� = 0  (10) 

Which illustrate is parameter of the Lie group of transformations   

�̃�𝑡 = 𝑇𝑇𝑡𝑡(𝑡𝑡, 𝑥𝑥, 𝑖𝑖, 𝜀𝜀) 

𝑥𝑥� = 𝑇𝑇𝑥𝑥(𝑡𝑡, 𝑥𝑥, 𝑖𝑖, 𝜀𝜀)   (11)  

𝑖𝑖� = 𝑇𝑇𝑣𝑣(𝑡𝑡, 𝑥𝑥, 𝑖𝑖, 𝜀𝜀)  

If we assume the solution of (10) is    𝑖𝑖 = 𝜃𝜃(𝑡𝑡, 𝑥𝑥), the transformations can be expressed 

as follow:  

�̃�𝑡 = 𝑇𝑇𝑡𝑡(𝑡𝑡, 𝑥𝑥,𝜃𝜃(𝑡𝑡, 𝑥𝑥); 𝜀𝜀)  

𝑥𝑥� = 𝑇𝑇𝑥𝑥(𝑡𝑡, 𝑥𝑥, 𝜃𝜃(𝑡𝑡, 𝑥𝑥); 𝜀𝜀)   (12)  

𝑖𝑖� = 𝑇𝑇𝑣𝑣(𝑡𝑡, 𝑥𝑥,𝜃𝜃(𝑡𝑡, 𝑥𝑥); 𝜀𝜀)  

Therefore 𝑖𝑖� is the solution to the transformations this unique problem can be solved by 

using the functional equation:    

𝜃𝜃 = �𝑇𝑇𝑡𝑡(𝑡𝑡, 𝑥𝑥, 𝜃𝜃(𝑡𝑡, 𝑥𝑥); 𝜀𝜀),𝑇𝑇𝑥𝑥(𝑡𝑡, 𝑥𝑥,𝜃𝜃(𝑡𝑡, 𝑥𝑥); 𝜀𝜀)� = 𝑖𝑖�   (13) 

By replacing the transformations in (12) with infinitesimal representations, we obtain the 

following new equation:   

�̃�𝑡 = 𝑡𝑡 + 𝜀𝜀𝜀𝜀1(𝑡𝑡, 𝑥𝑥, 𝑖𝑖; 𝜀𝜀)  

𝑥𝑥� = 𝑥𝑥 + 𝜀𝜀𝜀𝜀2(𝑡𝑡, 𝑥𝑥, 𝑖𝑖; 𝜀𝜀)   (14)   

𝑖𝑖� = 𝑖𝑖 + 𝜀𝜀𝜀𝜀1(𝑡𝑡, 𝑥𝑥, 𝑖𝑖; 𝜀𝜀)  

Then (13) can be simplified with infinitesimal representations with 𝜀𝜀 as the group 

parameter shown below:  

𝜃𝜃 + 𝜀𝜀𝜀𝜀1(𝑡𝑡, 𝑥𝑥,𝜃𝜃; 𝜀𝜀) = 𝜃𝜃(𝑥𝑥 + 𝜀𝜀𝜀𝜀2(𝑡𝑡, 𝑥𝑥, 𝜃𝜃; 𝜀𝜀)+𝜀𝜀𝜀𝜀1(𝑡𝑡, 𝑥𝑥,𝜃𝜃; 𝜀𝜀))    (15) 

According to the Taylor expansion, we can subtract the left-hand side from the right-

hand side of (15) to yield 𝜀𝜀 = 0 as shown  

𝜀𝜀1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝜀𝜀2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜀𝜀1 = 0      (16) 

Thus, the invariant surface condition of (16) can be determined as follows! 

�⃗�𝑖 ⋅ 𝐹𝐹(𝑡𝑡, 𝑥𝑥, 𝑖𝑖) =  𝜀𝜀1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝜀𝜀2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜀𝜀1 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣

= 0    (17) 

Where the tangent vector �⃗�𝑖 is calculated in the equation as shown: 

�⃗�𝑖 =  𝜀𝜀1
𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝜀𝜀2
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜀𝜀1 
𝜕𝜕
𝜕𝜕𝑣𝑣

    (18) 

We can solve the invariant condition of first order PDEs with the unit vector 𝜀𝜀1, 𝜀𝜀2 and 

𝜀𝜀1  by using the following characteristics of differential equations: 
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d�̃�𝑡
d𝜀𝜀

= 𝜀𝜀1(�̃�𝑡, 𝑥𝑥�, 𝑖𝑖�) 

d𝑥𝑥�
d𝜀𝜀

= 𝜀𝜀2(�̃�𝑡, 𝑥𝑥�, 𝑖𝑖�)   (19) 

d𝑖𝑖��
d𝜀𝜀

= 𝜀𝜀1 (�̃�𝑡, 𝑥𝑥�, 𝑖𝑖�) 

Where the initial conditions are as follows: 

d�̃�𝑡
d𝜀𝜀
�
𝜀𝜀=0

= 𝑡𝑡 

d𝑥𝑥�
d𝜀𝜀
�
𝜀𝜀=0

= 𝑥𝑥   (20) 

d𝑖𝑖��
d𝜀𝜀
�
𝜀𝜀=0

= 𝑖𝑖 

 

After reducing (10), the PDEs can be solved analytically via the characteristic curves. 

RESULTS AND DISCUSSION 

Solution of the Black-Scholes Equation 

ADM application for European option 

Given (3), following the ADM procedure, Considering:  

𝐿𝐿 = d𝜇𝜇 
𝑑𝑑𝑏𝑏

 , 𝑅𝑅 = 𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

 , 𝑁𝑁 = 0, 𝑦𝑦𝑔𝑔 = 0 

We obtain,  

𝐿𝐿−1𝑢𝑢𝑡𝑡(𝜏𝜏,𝑦𝑦) = 𝐿𝐿−1𝜇𝜇𝑥𝑥𝑥𝑥(𝜏𝜏, 𝑦𝑦) 

𝑢𝑢(𝜏𝜏,𝑦𝑦) = 𝑢𝑢(0,𝑦𝑦) + � 𝑢𝑢𝑥𝑥𝑥𝑥(𝑖𝑖,𝑦𝑦) d𝑆𝑆
𝑏𝑏

0
 

Assuming a solution in the form of an infinite series:  

𝑢𝑢(𝑥𝑥,𝑦𝑦) =  �𝜇𝜇𝑖𝑖 (𝑥𝑥,𝑦𝑦)
∞

𝑖𝑖=0

 

We now have,  

�𝜇𝜇𝑖𝑖(𝜏𝜏,𝑦𝑦)
𝑘𝑘

𝑖𝑖=0

= 𝑢𝑢(0,𝑦𝑦) + � �𝑢𝑢𝑖𝑖𝑥𝑥𝑥𝑥

∞

𝑖𝑖=0

(𝑖𝑖,𝑦𝑦) d𝑆𝑆
𝑏𝑏

0
 

For an approximation up to (k +1) terms, we have  

∑ 𝜇𝜇𝑖𝑖(𝜏𝜏,𝑦𝑦)𝑘𝑘
𝑖𝑖=0 = 𝑢𝑢(0,𝑦𝑦) +  ∫ � 𝑢𝑢𝑖𝑖𝑥𝑥𝑥𝑥

∞

𝑖𝑖=0
(𝑖𝑖,𝑦𝑦) d𝑆𝑆𝑏𝑏

0 , 
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↔  �𝜇𝜇𝑖𝑖(𝜏𝜏, 𝑦𝑦)
𝑘𝑘

𝑖𝑖=0

=  𝑢𝑢(0, 𝑦𝑦) +  �  
𝑘𝑘

𝑖𝑖=0

� 𝑢𝑢𝑖𝑖𝑥𝑥𝑥𝑥(𝑖𝑖, 𝑦𝑦) d𝑆𝑆
𝑏𝑏

0
 

Thus, the (k + 1)  − th approximation for the solution is given by   

𝜓𝜓𝑘𝑘 =  �𝜇𝜇𝑖𝑖(𝑡𝑡) 
𝑘𝑘−1

𝑖𝑖=0

≈ 𝑢𝑢(𝑡𝑡) 

And so, the solution of (3) is determined, for the call option, by  

𝐶𝐶(𝑡𝑡, 𝑥𝑥) = 𝐾𝐾e−1 2� (𝛾𝛾+1)𝑥𝑥−1 4� (𝛾𝛾−1)2𝑏𝑏  𝜓𝜓𝑘𝑘  

Lie Algebraic approach application for European option 

We utilize the prolongation formula discussed in [6] to obtain the characteristic 

differentials associated with the European call option equation (2), which is given as 

follows: 

𝜀𝜀2 − (𝑞𝑞 − 𝑥𝑥)(−4(𝜀𝜀2)𝑥𝑥+2(𝜀𝜀1)𝑡𝑡 + (𝑞𝑞 − 𝑥𝑥)(2(𝑟𝑟 −  𝜇𝜇)(𝜀𝜀1)𝑥𝑥 + (𝑞𝑞 − 𝑥𝑥)𝜎𝜎2 (𝜀𝜀1)𝑥𝑥𝑥𝑥)) =

0 (21) 

Before going further, let recall (2), as we assume that   𝐶𝐶(𝑇𝑇, 𝑥𝑥) = max(𝑥𝑥 − 𝑘𝑘, 0) :  

𝑟𝑟𝐶𝐶(𝑡𝑡, 𝑥𝑥) =  𝐶𝐶𝑡𝑡(𝑡𝑡, 𝑥𝑥) + 
1
2
𝜎𝜎2𝑥𝑥2 𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡, 𝑥𝑥) + 𝑟𝑟𝑥𝑥𝐶𝐶𝑥𝑥(𝑡𝑡, 𝑥𝑥) 

𝑟𝑟𝐶𝐶(𝑡𝑡, 𝑥𝑥) =  𝐶𝐶𝑡𝑡(𝑡𝑡, 𝑥𝑥) + 𝑟𝑟𝑥𝑥𝐶𝐶𝑥𝑥(𝑡𝑡, 𝑥𝑥) + 
1
2
𝜎𝜎2𝑥𝑥2 𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡, 𝑥𝑥) 

𝐶𝐶𝑡𝑡(𝑡𝑡, 𝑥𝑥) + 𝑟𝑟𝑥𝑥𝐶𝐶𝑥𝑥(𝑡𝑡, 𝑥𝑥) +  1
2
𝜎𝜎2𝑥𝑥2 𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡, 𝑥𝑥) = 0  (22) 

If we denote 𝑥𝑥 = 𝑞𝑞 − 𝑥𝑥  and  𝑟𝑟 =  𝑟𝑟 −  𝜇𝜇 

(22) Can now take the following format, 

(23)    𝐶𝐶𝑡𝑡(𝑡𝑡, 𝑥𝑥) + (𝑟𝑟 − 𝜇𝜇)(𝑞𝑞 − 𝑥𝑥)𝐶𝐶𝑥𝑥(𝑡𝑡, 𝑥𝑥) +  1
2
𝜎𝜎2(𝑞𝑞 − 𝑡𝑡)2 𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡, 𝑥𝑥) = 0 

We can now make all the necessary computations on (21): 

(21) Implies  

(𝑞𝑞 − 𝑥𝑥)(−2(𝑟𝑟 − 𝜇𝜇)(𝜀𝜀2)𝑥𝑥+2(𝑟𝑟 − 𝜇𝜇)(𝜀𝜀1)𝑡𝑡 + (𝑞𝑞 − 𝑥𝑥)(2(𝑟𝑟 −  𝜇𝜇)2(𝜀𝜀1)𝑥𝑥
− 𝜎𝜎2 ((𝜀𝜀2)𝑥𝑥𝑥𝑥 − (𝑞𝑞 − 𝑥𝑥)(𝑟𝑟 − 𝜇𝜇)(𝜀𝜀1)𝑥𝑥𝑥𝑥) − 2(𝜀𝜀1)𝑥𝑥𝑣𝑣))) − 2((𝑟𝑟 − 𝜇𝜇)𝜀𝜀2
+  (𝜀𝜀2)𝑡𝑡) =  0 

2(𝜀𝜀1)𝑡𝑡 + (𝑞𝑞 − 𝑥𝑥)(2(𝑟𝑟 − 𝜇𝜇)(𝜀𝜀1)𝑥𝑥 + (𝑞𝑞 − 𝑥𝑥)2𝜎𝜎2(𝜀𝜀1)𝑥𝑥𝑥𝑥) = 0 

2((𝜀𝜀2)𝑣𝑣 − (𝑞𝑞 − 𝑥𝑥)2𝜎𝜎2(𝜀𝜀1)𝑥𝑥𝑣𝑣 = 0 

2(𝜀𝜀2)𝑥𝑥𝑣𝑣 − 2(𝑟𝑟 − 𝜇𝜇)(𝑞𝑞 − 𝑥𝑥)(𝜀𝜀1)𝑥𝑥𝑣𝑣 −  (𝜀𝜀1)𝑣𝑣𝑣𝑣 = 0  

(𝜀𝜀2)𝑥𝑥𝑣𝑣 − (𝑟𝑟 − 𝜇𝜇)(𝑞𝑞 − 𝑥𝑥)(𝜀𝜀1)𝑥𝑥𝑣𝑣 = 0 
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(𝜀𝜀1)𝑥𝑥 = (𝜀𝜀1)𝑣𝑣𝑣𝑣 =  (𝜀𝜀1)𝑣𝑣 = 0 

The solutions are clearly illustrated in the equation below:   

𝜀𝜀1 = 𝑎𝑎1 + 𝑡𝑡 �𝑎𝑎2 +
8𝑎𝑎3𝑡𝑡𝜎𝜎2

(2𝑟𝑟 − 2𝜇𝜇 + 𝜎𝜎2)2
� 

𝜀𝜀2 =
1
4�

(𝑞𝑞 − 𝑥𝑥)(−4𝑎𝑎 + 2𝑎𝑎𝑡𝑡(𝑟𝑟 − 𝑢𝑢) + (𝑎𝑎2 − 4𝑎𝑎5)𝑡𝑡𝜎𝜎2)

+ 2(𝑥𝑥 − 𝑞𝑞)�𝑎𝑎2 +
16𝑎𝑎3𝑡𝑡𝜎𝜎2

(2𝑟𝑟 − 2𝑢𝑢 + 𝜎𝜎2)2 𝑙𝑙𝑎𝑎
(𝑥𝑥 − 𝑞𝑞)�� 

𝜀𝜀1 = 𝐶𝐶 �𝑎𝑎6 + 𝑎𝑎3𝑡𝑡2 +  𝑎𝑎5 ln(𝑥𝑥 − 𝑞𝑞) + 4𝑎𝑎3(ln(𝑥𝑥−𝑞𝑞))2

(2𝑟𝑟−2𝜇𝜇+𝜎𝜎2)2 +

𝑡𝑡 −8𝑎𝑎3𝜎𝜎
2+(2𝑟𝑟−2𝜇𝜇+𝜎𝜎2)(𝑎𝑎5(2𝑟𝑟−2𝜇𝜇+𝜎𝜎2)2+8𝑎𝑎3 ln(𝑥𝑥−𝑞𝑞)

2(2𝑟𝑟−2𝜇𝜇+𝜎𝜎2)2
�   

Where  𝐶𝐶 ≡ 𝐶𝐶(𝑡𝑡, 𝑥𝑥) 

Where 𝑎𝑎𝑖𝑖 for 𝑖𝑖 from 1 − 6 become arbitrary constants. 

They also provide the infinite-dimensional Vector Space for infinitesimal symmetries of 

Equation (23), including the following Operator  

𝑉𝑉1 = 𝜕𝜕𝑡𝑡                                                                                                          

𝑉𝑉2 = 𝑡𝑡𝜕𝜕𝑡𝑡 +  𝑘𝑘2𝜕𝜕𝑥𝑥 +  𝑘𝑘3𝑥𝑥𝜕𝜕𝑥𝑥 + 𝑘𝑘3 ln(𝑥𝑥 − 𝑞𝑞) 𝜕𝜕𝑥𝑥 +  𝑘𝑘5 ln(𝑥𝑥 − 𝑞𝑞)𝑥𝑥 𝜕𝜕𝑥𝑥 

𝑉𝑉3 =
1
𝑘𝑘1

( 𝑘𝑘6𝑡𝑡2𝜕𝜕𝑡𝑡 +  𝑘𝑘7 𝜕𝜕𝑐𝑐 +  𝑘𝑘8  ln(𝑥𝑥 − 𝑞𝑞)𝜕𝜕𝑥𝑥 + 𝑘𝑘9 ln(𝑥𝑥 − 𝑞𝑞)𝑥𝑥 𝜕𝜕𝑥𝑥 

𝑉𝑉4 =  𝑘𝑘10 𝜕𝜕𝑥𝑥                                                                                                 

𝑉𝑉5 = 𝑘𝑘11 𝜕𝜕𝑐𝑐 +  𝑘𝑘12 𝜕𝜕𝑥𝑥 +  𝑘𝑘13 𝜕𝜕𝑥𝑥                                                             

𝑉𝑉6 = 𝐶𝐶𝜕𝜕𝑐𝑐                                                                                                     

Where 𝑘𝑘𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 6 are defined by 𝑟𝑟, 𝜇𝜇,𝜎𝜎, 𝑞𝑞, 𝑡𝑡. 

Also, the symmetry algebra is calculated using 𝑉𝑉1 − 𝑉𝑉6 as to establish an invariant 

solution equation for (23). 

If 𝑖𝑖 = 𝐹𝐹(𝑡𝑡, 𝜂𝜂), in the scenario we have 𝑖𝑖 =  𝜀𝜀1(𝑡𝑡, 𝑥𝑥, 𝑖𝑖, 𝜀𝜀)|𝜀𝜀→0 

By assuming the value of: 

𝑎𝑎1 − 𝑎𝑎3, 𝐶𝐶1 and 𝐶𝐶2 (𝑎𝑎2 = 𝑎𝑎3 =  𝑎𝑎5 = 0,  𝑎𝑎1 = 𝐶𝐶1, 𝑎𝑎4 =  𝐶𝐶2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎6 = 1),  

Then 𝜀𝜀1, 𝜀𝜀2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀1 can be determined  

𝜀𝜀1 = 𝑟𝑟1, 𝜀𝜀2 = 𝑟𝑟2(𝑞𝑞 − 𝑥𝑥),𝜀𝜀1 = 𝐶𝐶 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝐶𝐶 ≡ 𝐶𝐶(𝑡𝑡, 𝑥𝑥) 
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After finding the relationship between 𝑥𝑥 and 𝑡𝑡, the invariant under the symmetry group 

of 𝑉𝑉1 − 𝑉𝑉6 can be calculated using the following equation: 

𝑖𝑖𝑎𝑎𝑖𝑖 =  𝐶𝐶2𝑡𝑡
𝐶𝐶1 ln(𝑞𝑞−𝑥𝑥) 

    For 𝐶𝐶1,𝐶𝐶2 ≠ 0 

Because of (23) 𝜀𝜀 = 𝑡𝑡 − 𝐶𝐶1
𝐶𝐶2

ln(𝑞𝑞 − 𝑥𝑥)  and the group invariant solution of (23), we have:  

𝜎𝜎2 − 𝐶𝐶2(2(𝑟𝑟 − 𝜇𝜇) +  𝜎𝜎2))𝐹𝐹(𝜀𝜀) + (2𝐶𝐶2�𝐶𝐶2 + 𝐶𝐶1(𝑟𝑟 − 𝜇𝜇)� + �2𝐶𝐶2(𝐶𝐶2 + 𝐶𝐶1(𝑟𝑟 − 𝐶𝐶)�

+ 𝐶𝐶1(𝐶𝐶2 − 2)𝜎𝜎2)𝐹𝐹′(𝜀𝜀) + 𝐶𝐶12𝜎𝜎2𝐹𝐹′′ (𝜀𝜀) = 0 

Where,   

𝐹𝐹(𝜀𝜀) = (𝑞𝑞 − 𝑥𝑥)−
1
𝐶𝐶2C(t, x)   

The  𝐹𝐹(𝜀𝜀) is the function with the arbitrary Constant 𝜔𝜔1 and 𝜔𝜔2: 

𝐹𝐹(𝜀𝜀) = 𝜔𝜔1𝑒𝑒𝑔𝑔1𝜉𝜉 + 𝜔𝜔2𝑒𝑒𝑔𝑔2𝜉𝜉 

Where,  

𝑔𝑔1 =  
−2𝐶𝐶2�𝐶𝐶2 + 𝐶𝐶1(𝑟𝑟 − 𝜇𝜇)� + 𝐶𝐶1(𝐶𝐶2 − 2)𝜎𝜎2

2𝐶𝐶12𝜎𝜎2

+
�𝐶𝐶22(4�𝐶𝐶2 + 𝐶𝐶1(𝑟𝑟 − 𝜇𝜇)�2 + 4𝐶𝐶1(𝐶𝐶2 − 2 + 𝐶𝐶1(𝑟𝑟 − 𝜇𝜇)𝜎𝜎2 + 𝐶𝐶12𝜎𝜎2   

2𝐶𝐶12𝜎𝜎2
 

𝑔𝑔2 =
−2𝐶𝐶2�𝐶𝐶2 + 𝐶𝐶1(𝑟𝑟 − 𝜇𝜇)� + 𝐶𝐶1(𝐶𝐶2 − 2)𝜎𝜎2

2𝐶𝐶12𝜎𝜎2

−   
�𝐶𝐶22(4�𝐶𝐶2 + 𝐶𝐶1(𝑟𝑟 − 𝜇𝜇)�2 + 4𝐶𝐶1(𝐶𝐶2 − 2 + 𝐶𝐶1(𝑟𝑟 − 𝜇𝜇)𝜎𝜎2 + 𝐶𝐶12𝜎𝜎2   

2𝐶𝐶12𝜎𝜎2
 

The invariant solution is  

𝐶𝐶(𝑡𝑡, 𝑥𝑥) =  𝜔𝜔1(𝑞𝑞 − 𝑥𝑥)
1−𝐶𝐶1𝑔𝑔1

𝐶𝐶2 𝑒𝑒𝑔𝑔1𝑡𝑡 + 𝜔𝜔2(𝑞𝑞 − 𝑥𝑥)
1−𝐶𝐶1𝑔𝑔2

𝐶𝐶2 𝑒𝑒𝑔𝑔2𝑡𝑡 (24) 

We clearly see that, despite the fact ADM method is fast, Lie algebraic Approach provides 

more rough and detailed results. 

CONCLUSION 

Since the Adomian Decomposition Method (ADM) converges quickly as shown in 

[9], it turns out to be an efficient alternative tool to solve the Black-Scholes equation. In 

general, both ADM and Lie Algebraic Approach give an analytical solution for Partial 

Differential equations problems, without implying that this solution is adequate to a given 

problem, because it doesn’t use all boundary conditions. But we have clearly notice the 
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roughness of the Lie Algebraic Approach which provide more accurate and detailed 

solution. Therefore, comparing both approaches may be very useful for practitioners. 
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	In this paper, we compare two relevant methods to find Analytical solution of the Black-Scholes Equation. First, we apply the Adomian Decomposition Method as in [2], to obtain a solution to the aforementioned equation with boundary condition for a European option. Secondly, we apply the Lie algebraic Approach for determining the solution as in [7]. Those two methods conducted us to investigate the thin line between the underlying results. Finally, we suggest a simple enhanced Due Diligence on both approaches.   
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